Calculating tickness of the CU cables for the driving lamp instalation.

Dane:	Voltage	U	12 [V]		Pattern for current intensity - pattern A							
	CU resistance	R_{cu}	17,5[$\mu \mathrm{\Omega}$]									
	Current Intensity [LR]	1	9,17 [A]	- from pattern A	I=P/U	so:	\| [LR]=	9,17 [A]				
	Current Intensity [Warn]	1	8,33 [A]	- from pattern A			1 [Warn] =	8,33 [A]				
	Allowable voltage drop	$\triangle \mathbf{U}$	3\% [V]									
	Power of the lamp [LR]	P	110 [W]	(both lamps on the same wire)								
	Power of the lamp [Warn]	P	100 [W]									
	Cable's lenght	L	8 [m]									

Both conditions should be fulfil:

1. Thermic condition:

In the monophase installations density of the current shouldn't be more than 15A/mm2
2. Allowable voltage drop condiotion:
Resistanse of the load: $\quad \mathrm{R}_{0}=\mathrm{U} / \mathrm{so}$ s.

Wire cross-section from the pattern for maximum resistance:

$$
\begin{aligned}
& R_{\max }=\left(R_{c u} \times L\right) / S \\
& \text { so: } \\
& S=\left(R_{c u} \times L\right) / R_{\max }=\left(17,5 \times 10^{-3}[\Omega \mathrm{~m}] \times 10 \mathrm{~m}\right) / 0,13[\Omega \mathrm{~m}]
\end{aligned}
$$

$\mathrm{S}_{\mathrm{LR}}=$	$3,56\left[\mathrm{~mm}^{〔}\right]$	$[\mathrm{LR}]$
$\mathrm{S}_{\text {WARN }}$	$=3,241\left[\mathrm{~mm}^{〔}\right]$	$[$ Warn $]$

Veryfication:

Cable with the cross-section $x\left[\mathrm{~mm}^{2}\right]$ makes voltage drop

$$
\text { for } x=\quad 4\left[\mathrm{~mm}^{2}\right]
$$

$\mathrm{R}_{\text {max }}=\left(\mathrm{R}_{\mathrm{cu}} \mathrm{xL}\right) / \mathrm{S}$
Voltage drop for [LR]
so:
$\triangle U=I^{*} R_{m}$ so:
$\triangle U=I^{*} R_{m}$ so:
$\mathrm{R}_{\max }=0,035[\Omega$
$\triangle U=0,32[\mathrm{~V}]$
$\triangle U=0,29[V]$
$4 \mathrm{~mm}^{2}$ cable is ok - both conditions are fulfil

for $\mathrm{x}=\quad 2,5\left[\mathrm{~mm}^{2}\right]$

	for $\mathrm{x}=\quad 2,5\left[\mathrm{~mm}^{2}\right]$		
$\mathrm{R}_{\text {max }}=\left(\mathrm{R}_{\mathrm{cu}} \times \mathrm{L}\right) / \mathrm{S}$	stad:	$\mathrm{R}_{\text {max }}=$	0,056 [Ω]
Voltage drop for [LR]	$\triangle \mathrm{U}=\mathrm{I}^{*} \mathrm{R}_{\mathrm{m}}$ so:	$\triangle \mathrm{U}=$	0,51 [V]
Voltage drop for [Warn]	$\triangle \mathrm{U}=\mathrm{l}^{*} \mathrm{R}_{\mathrm{m}}$ so:	$\triangle \mathrm{U}=$	0,47 [V]

Voltage drop for [LR]
Voltage drop for [Warn]
stad:
$\triangle U=I^{*} R_{m}$ so:
$R_{0}=1,31 \quad[\Omega$
$R_{0}=1,44 \quad[\Omega$
Resistance on the cable lenght "L" can't be more than approved \% from R_{0}, so \leq
0,04 [Ω]
$0,04[\Omega] \quad[W a r n]$

Allovable voltage drop

- Fulfilled if there were no assumptions regarding max current
- fulfilled (3% from 12 V makes $0,36 \mathrm{~V}$, so $0,32 \mathrm{~V}<0,36 \mathrm{~V}$)
- fulfilled (3% from 12 V makes $0,36 \mathrm{~V}$, so $0,29 \mathrm{~V} \leq 0,36 \mathrm{~V}$)

$$
\triangle \mathrm{U}=3 \% * 12 \mathrm{~V}
$$

$\Delta U=0,36[V]$

- Fulfilled if there were no assumptions regarding max current
- not fulfilled (3% form 12 V makes $0,36 \mathrm{~V}$, so $0,51 \mathrm{~V} \geq 0,36 \mathrm{~V}$)
- not fulfilled (3% form 12 V makes $0,36 \mathrm{~V}$, so $0,47 \mathrm{~V} \geq 0,36 \mathrm{~V}$)

